翻訳と辞書
Words near each other
・ Quantum neural network
・ Quantum no-deleting theorem
・ Quantum noise
・ Quantum non-equilibrium
・ Quantum nondemolition measurement
・ Quantum nonlocality
・ Quantum number
・ Quantum of Solace
・ Quantum of Solace (disambiguation)
・ Quantum of Solace (soundtrack)
・ Quantum on the Bay
・ Quantum operation
・ Quantum optics
・ Quantum oscillations (experimental technique)
・ Quantum paraelectricity
Quantum pendulum
・ Quantum Pharmaceutical
・ Quantum phase estimation algorithm
・ Quantum phase transition
・ Quantum phases
・ Quantum Philosophy
・ Quantum photoelectrochemistry
・ Quantum point contact
・ Quantum potential
・ Quantum praedecessores
・ Quantum probability
・ Quantum process
・ Quantum programming
・ Quantum pseudo-telepathy
・ Quantum Psychology


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Quantum pendulum : ウィキペディア英語版
Quantum pendulum
The quantum pendulum is fundamental in understanding hindered internal rotations in chemistry, quantum features of scattering atoms as well as numerous other quantum phenomena. Though a pendulum not subject to the small-angle approximation has an inherent non-linearity, the Schrödinger equation for the quantized system can be solved relatively easily.
==Schrödinger Equation==

Using Lagrangian theory from classical mechanics, one can develop a Hamiltonian for the system. A simple pendulum has one generalized coordinate (the angular displacement \phi ) and two constraints (the length of the string is constant and there is no motion along the z axis). The kinetic energy and potential energy of the system can be found to be as follows:
:T=\frac m l^2 \dot^2
:U=m g l (1-\cos(\phi))
This results in the Hamiltonian:
:\hat = \frac + m g l (1-\cos(\phi))
The time-dependent Schrödinger equation for the system is as follows:
:i \hbar \frac = - \frac \frac +m g l (1-\cos(\phi)) \Psi
One must solve the time-independent Schrödinger equation to find the energy levels and corresponding eigenstates. This is best accomplished by changing the independent variable as follows:

:\eta = \phi + \pi
:E \psi = - \frac \frac +m g l (1+\cos(\eta)) \psi
This is simply Mathieu's equation where the solutions are Mathieu functions
:0 = \frac +(\frac -\frac -\frac \cos(\eta)) \psi

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Quantum pendulum」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.